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ABSTRACT: Influenza is an important contributor to morbidity and mortality worldwide.  Accumulation 

of genetic mutations termed antigenic drift, allows influenza viruses to inflict yearly epidemics that may 

result in 250,000 to 500,000 deaths annually. Over 90% of influenza-related deaths occur in the older 

adult population. This is at least in part a result of increasing dysregulation of the immune system with 

age, termed immunosenescence.  This dysregulation results in reduced capacity to cope with infections 

and decreased responsiveness to vaccination.  The older adult population is in dire need of improved 

vaccines capable of eliciting protective responses in the face of a waning immune system.  This review 

focuses on the status of immunity, responses to influenza vaccination, and strategies that are currently 

being explored to elicit enhanced immune responses in this high risk population. 
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Annual influenza epidemics are the leading cause of 

severe virus-induced respiratory disease in the older 

adult population [1,2]. Influenza epidemics cause three 

to five million cases of severe illness, and may lead to 

250,000 to 500,000 deaths annually [3]. Influenza-

associated morbidity and mortality disproportionately 

affects older adults; defined here as adults age 65 and 

older.  Even in a population with a high rate of influenza 

vaccination, influenza infects 2–5% of older adults, 

resulting in 10- to 30-times more hospitalizations 

annually compared to younger individuals [1,2,4,5]. The 

average length of a hospital stay due to pneumonia and 

influenza increases from 5.8 days for those between the 

ages of 5 and 49, to  over 8 days for those older than 65 

[4]. The influenza-associated mortality rate for 

individuals 5–49 years of age is 0.2 deaths per 100,000 

person-years, compared with 1.3 deaths for those aged 

50–64 years [1]. The influenza-associated mortality rate 

for individuals 65 years and older is 22.1 deaths per 

100,000 [1]. Influenza impacts the frail older adult 

population even more severely. Individuals older than 85 

years of age are 16-times more likely to die of influenza-

related illness and 32-times more likely to die of 

influenza-associated pneumonia than those between 65 

and 69 years of age [1]. 

 

Effectiveness of Influenza Vaccination in Older 

Adults 
 

Vaccine Efficacy in Older Adults  

 

Vaccination remains the most cost-effective method 

currently available for reducing the morbidity and 

mortality associated with influenza infection.  Several 

studies have been conducted which demonstrated the 

ability of influenza vaccines to stimulate significant 

immune responses in older adults compared to placebo 

[6,7] However, these studies only evaluated immune 

parameters, while protection from disease was not 

evaluated.  During the 1991-1992 influenza season, 

Govaert et al. conducted the only large, published, 

randomized, placebo-controlled trial of influenza 
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vaccines in older adults, examining vaccine effects on 

clinical outcomes [8].  This study estimated influenza 

vaccine efficacy to be 58% for the prevention of clinical 

influenza with serologic evidence of infection in 

relatively healthy, adults aged 60 years and older.  This 

study also suggested that subjects who had received the 

influenza vaccine in previous years were better protected 

than first-time vaccinees [9]. However, placebo-

controlled influenza vaccine trials in the aged population 

are no longer considered ethical, because the United 

States and other countries have recommended that all 

persons aged 65 years and older receive annual influenza 

vaccination.  These recommendations have limited 

current evaluations of influenza vaccine effectiveness in 

older adults to observational studies that compare the 

relative reduction in influenza disease outcomes in those 

who elect to be vaccinated compared to those who are 

not vaccinated. This reliance on observational studies, all 

of which are subject to various forms of bias, has led to 

considerable controversy over the effectiveness of 

influenza vaccination in older adults. Differences in the 

analysis methodology, a limited number of subjects, and 

variability in influenza attack rates from season to season 

have resulted in variable and often conflicting 

conclusions [10-12]. While some studies claim a definite 

benefit from influenza vaccination of older adults, others 

question the benefit of vaccination, and point to a 

‘healthy vaccine bias’ that may confound the results of 

many large analyses [13-15]. 

In an effort to overcome these potential problems, 

several studies have been performed with large numbers 

of subjects across multiple influenza seasons, aimed at 

assessing the effectiveness of influenza vaccination in 

older adults.  Nichol et al. evaluated data from subjects 

aged 65 or over, across 10 influenza seasons from 1990 

to 2000 [16].  This study pooled data from community-

dwelling individuals from 18 cohorts across the United 

States.  Influenza vaccination, in this study, was 

associated with a 27% reduction in the risk of 

hospitalization due to influenza, and a 48% reduction in 

the risk of death [16].  A similar study by the same group 

examined three large managed care organizations across 

two influenza seasons (1998-2000) resulting in similar 

estimates [17].  However, concern has been raised about 

the likelihood of a healthy vaccinee bias resulting in an 

overestimation of influenza vaccine effectiveness in 

older adults in large cohort studies of this type [13,14]. 

Recent analyses designed to control for unmeasured 

health factors potentially associated with both 

vaccination status and risk of mortality have recently 

been developed [18,19]. More studies of this type are 
needed to better differentiate vaccine effects for 

confounding, especially the healthy vaccinee bias, 

particularly in studies with a mortality outcome. 

While considerable controversy exists over the 

benefit to influenza vaccination in older adults compared 

to unvaccinated, it is generally agreed that vaccine 

responses in older adults are significantly reduced 

compared to young, healthy adults.  In young, healthy 

adults, influenza vaccine effectiveness have ranged from 

47% to as high as 86% effective in reducing laboratory-

confirmed illness, depending upon antigenic similarity 

between the vaccine and the circulating influenza strains 

[20-23].  In older adults, influenza vaccines have been 

estimated to be 17% to 53% effective at reducing 

pneumonia and influenza hospitalizations; however, 

these observational studies did not use laboratory-

confirmed influenza illness as a criterion [16,24,25]. 

A quantitative review of studies by Goodwin et al. 

evaluated the antibody responses to influenza 

vaccination in older adults [24]. Of 4,492 vaccinated 

subjects, 42%, 51% and 35% of subjects seroconverted 

(defined as a 4-fold increase in antibody titers) to H1N1, 

H3N2 and influenza B, respectively, compared with 

60%, 62% and 58%, of younger subjects (913 subjects), 

respectively. Responses in subjects ≥75 years of age 

were especially impaired with seroconversion (a 4-fold 

or greater increase in serum HI antibody titer) rates  of 

32%, 46% and 29%, respectively.  Seroprotection 

(defined as hemagglutination inhibition (HI) titers ≥ 40) 

in older adults (4,643 subjects) occurred in 69%, 74%, 

and 67% to H1N1, H3N2 and influenza B, respectively, 

compared to 83%, 84%, and 78% of younger subjects 

(1,151 subjects).  Seroprotection in subjects age 75 or 

older was demonstrated in 65%, 68%, and 71% of 

subjects to H1N1, H3N2 and influenza B, respectively 

[24]. It should be noted; however, that while the so-

called seroprotective titer (HI titer ≥ 40)  is a widely 

accepted immune correlate of protection, this standard 

was established in younger adults [26-29]. While both 

the HI titer of ≥ 40 and seroconversion parameters are 

commonly applied to influenza studies performed in 

older adults to evaluate immunogenicity, there is little 

evidence to suggest that achievements of HI titers ≥ 40  

correlate with protection in  this age group. On the 

contrary, there is evidence to suggest that antibody titers 

are poor correlates of protection in the aged; T cell 

responses appear to correlate better with immune 

protection to influenza in older adults [30,31]. Further 

studies examining immune correlates in the older 

population are greatly needed for influenza research in 

this age group. 
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Figure 1. Immunosenesence of the aging immune system. The adult immune system becomes less responsive to 

vaccination, and less able to cope with infectious disease with age. Multiple arms of the immune system have been 

shown to develop age-related defects resulting in the loss or decreased effectiveness of key protective functions. 

Development of improved influenza vaccines for older adults must overcome these age related defects to improve 

protection of this high risk population. 

 

 

Immunity in Aging 

The impaired ability of older adults to develop effective 

immunity in response to influenza vaccines has been 

attributed to immunosenescence, defined as a decline in 

the body’s ability to fight infection, mount adequate 

protective immune responses, and develop 

immunological memory for future protection [32,33].  

This age-related immunological dysfunction is 

summarized in Figure 1, and discussed in detail below. 

 

Immunosenescence in Innate Immunity 

 

The innate immune system, the first line of defense 

against microbial pathogens, is mediated by a diverse 

group of cell types composed primarily of neutrophils, 

natural killer (NK), natural killer T cells (NKT), 

monocytes/macrophages and dendritic cells (DCs). DCs 

are the most potent, professional antigen presenting cells 

and play a central, unique role in bridging innate and 

adaptive immunity in response to pathogen invasion 

[34,35]. DC progenitors in the bone marrow give rise to 

circulating precursors that home to the periphery where 

they reside as immature DCs. Upon stimulation with 

microbial products, DCs mature and migrate to the 

draining lymph nodes to stimulate antigen-specific T 

cells [35,36]. 

 

Defects in Dendritic Cell Populations 

DCs in humans are heterogeneous and are subdivided 

into two major categories, conventional or myeloid DCs 
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(mDC) and plasmacytoid DCs (pDC). mDCs play a 

crucial role in antigen presentation but show rather 

limited capacities in type I interferon (IFN) production. 

pDCs can produce large amounts of type I IFNs and are 

thought to be the major source of these cytokines in vivo 

[37,38]. Although the number and phenotype of DCs in 

aged mice seems preserved [39,40], studies in humans 

are not conclusive. DC number & phenotype were shown 

to be comparable between the young and the aged in 

some studies [41,42]. However,  Della Bella et al. and 

Panda et al. demonstrated that the number of mDCs in 

human blood progressively declines with age, and mDCs 

appeared to have a more mature phenotype and impaired 

ability to produce pro-inflammatory cytokines (TNF-, 

IL-6 and IL-12) upon Toll-like receptor (TLR) 

engagement [43,44]. In addition, mDCs were severely 

depleted in frail older subjects [41]. Most studies showed 

that overall pDC numbers in peripheral blood were lower 

in healthy older adults and the amount of IFN generated 

by pDCs was decreased in response to virus infection 

[41,45]. Because of the importance of pDCs for antiviral 

responses, the age-related changes in pDCs likely 

contribute to the impaired immune response to viral 

infections in older persons, especially when combined 

with the mDC dysfunction occurring in those with 

compromised health. 

In terms of antigen uptake and migration, DCs from 

older individuals were shown to display significantly 

reduced capacity to phagocytose antigens via 

macropinocytosis and endocytosis in contrast to DCs 

from the young. In the same study, impaired capacity to 

migrate in vitro in response to chemokines was observed 

in DCs from older subjects [42].  DCs differ from other 

APCs in that they have the unique capacity to prime 

naïve T cells, which is critical for mounting an effective 

response against novel antigens. Earlier studies in aged 

mice demonstrated a decreased ability to prime a robust 

T cell response against an infectious agent [39,46]. In 

humans, DCs generated from peripheral blood of older 

adults were equally effective as those from younger 

adults in inducing the proliferation of T cell clones after 

antigenic stimulation [47,48].  However, the DCs were 

generated in vitro with cytokines that may have 

overcome age-related defects that are observed in vivo in 

older adults.  Although the role of DCs in response to 

foreign antigens seems controversial, DCs from aged 

subjects display impaired capacity to phagocytose self 

antigens in the form of apoptotic cells [49,50].  This 

would result in the accumulation of apoptotic cells 

leading to secondary necrosis and release of self-antigens 

such as DNA. DCs from older adults were shown to 

display increased reactivity to intracellular human DNA. 

These DNA-primed DCs from older adults enhanced T 

cell proliferation compared to younger adults [51,52]. An 

impaired uptake of apoptotic cells and increased 

reactivity to intracellular human DNA by DCs from 

older adults may result in both increased inflammation 

and autoimmunity commonly associated with aging.  

 

Defects in Macrophages 

Macrophages function as ‘pathogen sensors’ and play an 

important role in the phagocytosis of antigen, 

microorganisms and cellular debris, and elimination of 

invading microorganisms and tumors [53]. A significant 

decrease in the number of macrophages in older adults 

has been described [54]. While macrophage precursors, 

monocytes, are found in the peripheral blood. 

Macrophages are found primarily in tissues. This has 

made studies of human macrophages difficult, and 

restricted studies primarily to human alveolar 

macrophages which can be isolated more readily than 

those from other sites. As a result, many of the studies 

examining the effect of aging on macrophage function 

have been done in animal models, such as mice. 

Phagocytosis constitutes the first line of immune 

defense against pathogenic bacteria that have penetrated 

the epithelial barrier. An age-related decline in particle 

internalization, reactive oxygen species (ROS) and nitric 

oxide (NO) production were observed in murine 

macrophages from aged animals which weaken defense 

mechanisms to clear infectious agents [55-59]. 

Activated macrophages secrete pro-inflammatory 

cytokines and chemokines such as TNF-, IL-1, IL-6 

and metalloproteinases to initiate inflammatory 

responses that recruit neutrophils and natural killer cells. 

In vitro, macrophages from the alveoli and spleen of 

older mice generally produced more cytokines compared 

to younger counterparts. Conversely, macrophages from 

the peritonea of older mice generally produced less 

cytokine in vitro compared to younger counterparts 

[60,61]. Macrophages play an important role during the 

inflammatory phase of wound healing. They keep the 

wound free from infection and promote angiogenesis 

[62]. The alterations in chemokine secretion, and a 

concurrent decline in wound macrophage phagocytic 

function may contribute to the delayed repair response of 

aging [63]. In addition, defects in secretion of vascular 

endothelial growth factor and expression of cell adhesion 

molecules are also thought to contribute to the delay in 

wound healing in the aged [64]. However, not all 

inflammatory mediators are produced in reduced 

amounts with aging, some of which may actually 

increase with age. Macrophages from old mice have 

significantly higher levels of PGE2 production compared 

with those from young mice [65,66]. PGE2 plays a 

critical role in the age-associated dysregulation of the 
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immune and inflammatory responses. In particular, 

several studies have shown that increased PGE2 

production in macrophages from old mice contributes to 

the suppression of T cell function with aging [66]. In 

summary, the effects of advancing age have been 

reported on the broad range of functional capabilities of 

macrophages. However, the reported impact of aging on 

macrophage function varies from study to study due to 

differences in experimental conditions assessing their 

function and the underlying medical conditions of the 

population evaluated. 

 

Defects in Pattern Recognition Receptors with Age 

As main cellular components of innate immunity, DCs 

and macrophages recognize molecules shared by groups 

of related microbes that are essential for the survival of 

those organisms and are not found associated with 

mammalian cells. These unique microbial molecules are 

called pathogen-associated molecular patterns or PAMPs. 

These PAMPs are sensed by the host’s germline encoded 

pattern recognition receptors (PRRs) expressed on DCs 

and macrophages. Toll-Like Receptors are the most 

widely studied PRRs and are considered to be the 

primary sensors of pathogens. Eleven human TLRs and 

13 murine TLRs have been described to recognize 

specific molecular patterns present on the surface of 

pathogens [67]. Toll-Like Receptors are evolutionarily 

conserved molecules and the expression of TLRs varies 

in different cell subsets: the expression of TLR3 on 

primary human macrophages from older individuals was 

lower than macrophages from young individuals [68]. 

Decreased expression of TLR3 and TLR8 in mDC and 

decreased expression of TLR7 in pDC was observed 

[44]. 

After recognition of microbial pathogens, TLRs 

trigger intracellular signaling pathways that result in the 

induction of inflammatory cytokines, type I IFN and 

chemokines. Panda et al. found substantial decreases in 

older compared with young individuals in TNF-, IL-6, 

and/or IL-12 (p40) production in mDCs, and in TNF- 

and IFN- production in pDCs in response to TLR 

engagement [44,69]. These results support the concept 

that increased susceptibility to infections and poor 

adaptive immune responses in aging may be due to the 

decline in TLR expression and function [70-72]. Upon 

ligation, TLR signaling activates a cascade of 

intermediates including myeloid differentiation factor-88 

(MyD88), IL-1 receptor-associated kinase (IRAK) and 

tumor necrosis factor receptor-associated factor 6 

(TRAF6) leading to activation of nuclear factor (NF)- 

B and activating protein-1 (AP-1) [73-75]. Both basal 

and downstream signaling components, such as the 

adaptor molecule MyD88, TRAF6 and several members 

of the NF-κB pathway, such as c-Rel, p65, NF-κB p50 

and p52 were reduced in the aged suggesting that the 

TLR-dependent pathway is working at a significantly 

reduced efficiency [76]. Qian et al. observed no 

significant age-related difference in expression or 

nuclear translocation of signaling molecules in initial 

antiviral responses. But they showed that DCs from older 

donors have diminished induction of late-phase 

responses (eg, STAT1, IRF7, and IRF1), suggesting 

defective regulation of type I IFN [77]. 

 In specific TLR 4 signaling, LPS stimulation results 

in endothelial activation through a receptor complex 

consisting of TLR4, CD14 and MD2. Serum levels of 

LPS Binding Protein are unaltered in aged mice or 

humans. However, the expression of CD14 as well as 

MD2 on macrophages is reduced in mice [78]. Excessive 

immune responses are detrimental to the host and 

negative feedback regulation is crucial for the 

maintenance of immune-system integrity. TLR signaling 

during subsequent or continuous exposure induces the 

expression of IL-1 receptor-associated kinase-M and 

suppressor of cytokine signaling as negative regulators. 

Ageing increases SOCS-3 expression in rat 

hypothalamus and human muscle tissue, and SOCS1 and 

SOCS3 in human neutrophils [79-81]. In addition, 

increased levels of IRAK-M mRNA as well as protein 

have been observed with increased age in mice after LPS 

stimulation [82]. Therefore, in older adults, dysfunction 

of TLR signaling could arise from either decreased 

activation of TLR signaling adaptor molecules and/or 

increased activity of negative regulators of TLR 

function. 

 

Defects in NK Cells 

NK cells play an essential role in the innate immune 

defense against tumors and viral infections. They 

mediate MHC-independent cytotoxicity through perforin 

and granzyme B, and regulate adaptive immune 

responses by the production of chemokines and 

cytokines for recruitment and activation of T and B cells. 

Two distinct populations of NK cells can be identified by 

the density of surface CD56 molecules. While CD56
dim

 

NK cells mediate cytotoxicity of virus-infected cells, the 

low density CD56
bright

 subpopulation appears to be the 

primary source of NK cell-derived immunoregulatory 

cytokines such as IFN-γ, TNF-α, GM-CSF, IL-10 and 

IL-13 [83,84].  Although there is a reduction in 

CD56
bright

 NK cells with aging [85,86], an expansion of 

CD56
dim

 NK cells results in an increase in the absolute 

number [85-87]. 

Age-related changes in NK cell functionality are 
controversial. Several studies have demonstrated 

diminished, unaffected or even enhanced activity of NK 
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cells from older adults [86-90]. Reduced cytotoxicity of 

NK cells based on diminished perforin expression was 

observed in older adults [87,88], although a more recent 

study revealed a preserved cytotoxic ability of NK cells 

from childhood through old age [86]. Interferon-γ 

production upon NK cell activation was previously 

considered to be reduced in older adults [90], but was 

recently shown to be significantly higher in the aged, 

particularly in subjects older than 85 years of age 

compared to younger older adults [89]. Altered 

chemokine (RANTES, MIP-1a, IL-8) production [87] 

and suppressed trafficking of matured NK cells into 

draining lymph nodes [91] have also been associated 

with ageing. 

Several potential mechanisms have been observed to 

account for the functional decline of NK cells in older 

adults. Reduced cytotoxicity may be a consequence of 

impaired zinc [87,92] or calcium [93] homeostasis in NK 

cells from older adults. An increased expression of 

Ly49-receptors downregulates NK activation [94], and 

diminishes sensitivity of aged NK cells to stimulatory 

effects of IL-2 [90] and IFN-α [95]. Moreover, several 

studies [86,96,97] demonstrated significant age-related 

changes in expression of NK cell receptors that inhibit or 

activate NK cells to lyse target cells, including killer cell 

immunoglobulin-like receptors (KIRs), natural 

cytotoxicity receptors (NCRs) and C-type lectins. The 

increased expression of KIR [96] particularly on the 

CD56
bright

 subset [86], along with the decreased 

expression of C-type lectin CD94 [97] and activating 

NCRs, NKp30 and NKp46 in both CD56 subsets [86] 

were observed in older adults compared to younger 

adults. 

 

Defects in T cells with Aging 

 
Aging affects all stages of T cell responses including 

generation, maturation, differentiation, activation and 

functionality of both CD4 and CD8 T cells. Progressive 

accumulation of these defects leads to several key 

changes in T cell immunity: decreased production of 

naïve T cells, increased proportion of memory cells, 

decreased activation and T cell signaling, and decreased 

proliferation and antigen-specific response. Beginning 

with the most crucial event – depletion of naïve T cells 

due to thymic involution – all subsequent changes are 

strongly interconnected revealing imbalanced T cell 

responses with altered survival and activity of immature 

and mature T cells. 

 

Thymic Involution and T cell Repertoire 

The size of the naïve T cell pool is significantly 

decreased in aging. Naïve T cells are generated from 

bone marrow precursors and develop into mature T cells 

upon migration to the thymus. The age-associated 

involution of the thymus begins in the initial years of life 

and continues into almost complete adipose tissue 

replacement by age 70 [98,99]. Thymic atrophy involves 

considerable contraction of thymic epithelial space and 

substantial increase in perivascular space that contains 

low levels of recruited peripheral T and B cells and is not 

directly involved in thymopoiesis [100]. Another factor 

contributing to naïve T cell pool depletion in older adults 

is a lack of IL-7 production. IL-7 plays a key role in 

survival of both preselected and matured T cells, 

including memory cells that express the IL-7 receptor. 

Treatment with IL-7 reversed thymic atrophy and 

increased thymic output in aged mice [101,102], and 

increased the number of naïve CD4 and CD8 T cells in 

aged rhesus macaques [103]. In a small human study 

involving volunteers under 60 years old, recombinant IL-

7 slightly enhanced CD45RA+ and diminished 

CD45RO+ levels in CD4 and CD8 T cells, indicating 

expansion of the naïve T cell pool [104]. Decreased 

production of IL-7 was associated with observed thymic 

involution both in animal studies [105], and aged 

humans [106].  

In addition to limited development and survival, 

naïve T cells in older adults appear to be more 

susceptible to apoptosis. Decreased expression of bcl-2 

molecules in naïve CD4 and CD8 T cells along with 

increased activation of caspase 8 and 3 was observed in 

aged humans indicating that aged naive T cells maintain 

both apoptotic pathways [107-109]. The age-related 

decrease in the ability of naïve T cells to survive and 

renew, results in a significant loss in the ability to mount 

primary responses to novel antigens [110,111]. 

The age-associated reduction in naïve T cells in older 

adults is partially compensated by an increased memory 

T cell pool that provides cross reactive responses to new 

antigens. This age associated increased memory T cell 

pool is not simply a proportional increase as the naïve T 

cell pool wanes due to reduced thymic output. Several 

animal studies reported an increased memory phenotype 

even in newly developed CD4 T cells [112,113]. Bone 

marrow cells from young mice were transferred to both 

young and aged animals. Peripheral CD4 T cells 

reconstituted in aged mice revealed phenotype and 

lymphokine profiles similar to those from the control 

aged mice. However, these are distinctly different from 

those in the young mice. These data suggest that the aged 

microenvironment is defective and influences the 

maturation of newly produced CD4 T cells. Besides 

antigen-independent accumulation of memory T cells, 
clinical data indicate that chronic viral stimulation in the 

older adults leads to expansion of CD4 and CD8 T cells 
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with a typical memory phenotype [114,115]. However, 

memory T cells from older adults have decreased 

differentiation and proliferative ability [116] and 

demonstrate low CD28 and CD27 expression reflecting 

their poor activation [116]. 

Poor adaptive immune response in aging is also 

related to narrowing of the T cell repertoire by decreased 

TCR diversity and increased levels of anergic CD28- 

cells. Reduced TCR diversity reveals the inability of 

naïve T cells to differentiate efficiently into new effector 

T cells with high specificity for antigen. Animal studies 

and in vitro analysis of isolated human CD4 and CD8 T 

cells indicate significantly decreased TCR beta-chain 

diversity [117-119]. In individuals over 70 years old, 

CD4 T cell repertoire decreased 100 times compared 

with young adult controls [117]. Another factor that 

narrows T cell repertoire is progressive accumulation of 

cells lacking the costimulatory molecule, CD28, which 

occupy available immunological space. CD28-negative 

T cells are anergic to antigen stimulation [120] and 

resistant to apoptosis [121], allowing them to expand 

considerably in vivo [120,122,123]. Significant 

expansion of CD28null T cells was observed upon 

chronic stimulation with viral [115,122-124], auto- [125] 

and tumor-associated antigens [126,127]. In addition 

CD8+CD28- cells seem to retain cytokine production 

that disrupt APC function, suppress T cell responses, and 

disturb the Th1:Th2 balance [128,129].  

 

Regulatory T Cells 

Regulatory T cells (Treg) expressing a CD4+CD25+ 

phenotype along with effector/memory markers are 

believed to suppress redundant T cell immune responses, 

preventing autoimmune diseases and immune pathology 

following excessive immune reactivity [130]. Although 

the data for Treg functional activity in older adults is 

controversial [131-133], a significant increase in the 

number of Treg cells with age is well established 

[131,133,134]. Resistant to apoptosis, and independent 

of IL-7 signaling [135,136], Tregs seem to suppress CD4 

and CD8 T cell functionality with aging [136,137] by 

impairment of costimulatory CD40 and CD86 molecule 

expression on DCs, thereby diminishing the ability of 

APCs to form stable contacts with responding T cells 

[138]. Several studies show a correlation between 

increased levels of Tregs in aged mice and older adults, 

and low levels of effector/memory T cells to viral 

antigens [139-142], suggesting that age-associated 

defects in the regulatory T cell compartment affects the 

immune control of acute and persistent viral infections. 

 

Decreased T Cell Activation and Signaling 

Although the T cell compartment appears to accumulate 

effector/memory CD4 and CD8 T cells with age, the 

ability of those cells to respond to antigenic stimulation, 

achieve activation and eventually respond is significantly 

decreased with aging. Several factors are considered to 

be involved in this process: (i) the lack of costimulatory 

molecules; (ii) low efficiency of receptor synapse 

formation between the T cell receptor and antigen-MHC 

complex on the surface of antigen-presenting cells; (iii) 

weak activation of intracellular signaling; and (iv) low 

expression of surface activation/differentiation markers. 

T cells from older individuals lose the costimulatory 

molecule CD28, becoming anergic to antigen stimulation 

and thus resulting in a weak immune response. A 

significant proportion of CD4 and CD8 T cells 

expressing a CD28null phenotype was observed in 

subjects over 65 years old vaccinated with influenza 

trivalent vaccine, and only 17% of vaccine recipients 

demonstrated increased antibody titers to all three 

vaccine components, while almost half of the vaccinees 

failed to respond at all [143]. The whole synaptic 

complex of TCR and antigen-MHC presented by APCs 

becomes less efficient with aging [144-146]. Subsequent 

intracellular signal transduction is weak due to defects in 

signaling pathway gene expression [147], calcium and 

tyrosine kinase metabolism and alterations in plasma 

membrane lipids [144,145,148,149]. All these factors 

together provide poor T cell activation that is reflected in 

low expression of activation/differentiation markers. 

 

Decreased T Cell Functionality 

Defects in the functionality of aged naïve and memory T 

cells reveal suboptimal effector responses. The decreased 

proliferation of peripheral CD4 and CD8 T cells isolated 

from older adults to mitogens and antigens is well 

established [150,151]. Altered functionality of the 

effector/memory compartment has been associated with 

low IL-2 production [148,151]. While there has been an 

overall cytokine imbalance demonstrated in mice with 

polarization towards Th2, it was not very clear in 

humans [129,152-159]. Furthermore, antigen-

experienced T cells from aged mice exhibit decreased 

trafficking into sites of inflammation [160,161], and 

reduced helper or cytolytic activity [118,162-164]. 

Furthermore, young mice that received naïve CD4 cells 

from aged donors have dramatically decreased numbers 

of antigen-specific B cells after immunization, 

suggesting reduced help from CD4 T cells from the older 

animals [162]. Clinical trials of influenza vaccines show 

substantially lower Granzyme B expression by effector 

CD8 T cells in vaccine recipients over 65 years old 
[163,164]. Besides altered functionality, memory T cells 

in older adults also seem to be more susceptible to 
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apoptosis, presenting decreased expression of bcl-2 and 

increased Fas-mediated activation of caspase 8 and 3 

[165,166]. In addition, diminished T cell responses with 

aging are partially a result of age-associated changes in 

antigen presenting cells. Aged mice demonstrated 

limited expansion of influenza-specific CD8 T cells 

transferred from young mice [167], but the ability of 

CD8 cells to proliferate and produce IFN- significantly 

increased after co-transfer of DCs from young donors 

[168]. 

 

Immunosenescence in NK T Cells 

NK T cells represent a heterogeneous population 

expressing T cell markers such as CD3, CD4, CD8 and 

CD1d restricted TCR (Vα24/Vβ11 in humans) as well as 

NK-cell markers such as CD56, CD94 and KIR [169]. 

While an age-associated decrease in NK T cell numbers 

was observed in mice [170,171], ageing in humans does 

not seem to affect NK T cell levels [86,172],  although a 

significant decrease in expression of CD94 in aged 

human NKT cells was noticed [86,96]. In contrast to T 

lymphocytes maturating in the thymus, NK T cells may 

migrate directly from the bone marrow to the liver. The 

ability to maintain extrathymic development is 

considered to be a compensatory mechanism for thymus 

involution during ageing [173]. However, studies with 

viral infections in aged mice identified the NK T cells as 

producers of high levels of IL-17 which was associated 

with increased inflammation and hepatic injury 

[174,175] suggesting that NK T cells have the potential 

to account for adverse infection-related outcomes in 

aging. 

 

Aging in Humoral Immunity 

 
The effect of aging on humoral immunity is 

characterized by quantitative and qualitative alterations 

in antibody responses. These render older adults 

increasingly susceptible to infectious diseases and prone 

to suboptimal responses to vaccination. Since most 

current vaccines are designed to generate a neutralizing 

antibody response against infectious pathogens such as 

influenza viruses, the senescence of humoral immunity 

directly influences vaccine immunogenicity and efficacy 

in the aged. While several players of the immune system 

intricately affect each other’s function, defects in antigen 

presenting cell function, T cell number and function, 

namely diminished CD4 T cell help and increased T cell-

mediated suppression play significant roles in reduced 

humoral immunity [99,160]. However, a number of 

studies point to intrinsic changes in B cells associated 

with aging, indicating senescence of humoral immunity 

itself. These changes include reductions in cellular 

composition, in B cell diversity, and in B cell effector 

function. In this section, we discuss findings of intrinsic 

alterations of B cells associated with aging. Although 

much of our knowledge on immunosenescence of 

humoral immunity derives from animal studies, there are 

some discrepancies between animal vs. human data 

[176]. Therefore, in this review, we focus on findings 

from human B cells. 

 

Cellular Composition 

Both the total number and percentage of mature B cells 

and antigen-specific B cells in the periphery alter with 

aging [177]. A number of studies have found that the 

absolute number and percentage of mature B cells 

including naïve and memory B cells in the periphery 

decrease compared to younger counterparts [178]. 

Especially, the reduction in overall human memory B 

cells as well as compromised recall memory responses is 

noted. Human memory B cells are composed of IgM 

memory and class-switched memory B cells, which 

include IgG, IgA and IgE memory B cells. IgM memory 

B cells play an important role in bacterial infection, such 

as pneumococcal infection [179]. In older adults, the 

frequency of antigen-specific IgM memory B cells was 

shown to be dramatically reduced, i.e. the pneumococcal 

bacteria-specific IgM response was reduced following 

vaccination [180]. A reduction in IgG responses and 

alteration in IgG subclass composition in response to 

influenza vaccination has also been reported [181]. In 

contrast to a dramatic reduction in mature B cells in the 

periphery, B lymphopoiesis in bone marrow stays 

relatively active and the percentage and numbers of B 

cell precursors decline only moderately with aging 

[182,183]. This pattern may reflect age-associated 

changes in the microenvironment that supports the 

survival of mature B cells in the periphery. B cell 

activating factor (BAFF) and a proliferation-inducing 

ligand (APRIL) are TNF ligand superfamily proteins that 

are critical survival factors for mature B cells in the 

periphery [184,185]. It has been reported that in healthy 

older adults, the blood plasma levels of BAFF and 

APRIL are reduced [186]. Primary sources of BAFF and 

APRIL are monocytes, macrophages and dendritic cells 

[187,188], and aging is associated with the decline in the 

number and function of dendritic cells [41] as outlined 

above. Thus, these studies point out a global alteration in 

innate and adaptive immunity associated with aging.     

 

B Cell Diversity 

Changes in the B cell repertoire associated with aging 

involve an increase in the reactivity against autologous 
antigens and impaired responses against foreign 

antigens, expansion of oligoclonal populations, reduced 
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size and diversity of the B cell repertoire, and reduced 

antibody specificity and affinity [189-191]. A shift in the 

B cell repertoire from foreign to self-antigens 

accompanies selectively decreased activity of 

conventional B2 (CD5-) B cell subsets compared to 

autoreactive B1 (CD5+) B cell subsets, resulting in 

production of autoantibodies [192].  Reduced B cell 

diversity could be in part due to impaired B cell 

lymphopoiesis in the bone marrow and due to 

diminished diversification in the germinal center [191].  

The diversity of the B cell repertoire can be measured by 

the diversity of mRNA coding for the 3
rd

 

complementarity-determining region (CDR3) of the 

immunoglobulin molecule [193]. This region is highly 

diverse both in sequence and length of the sequence and 

important for antigen binding. The diversity of the Ig 

heavy chain CDR3 region is due to the addition and 

deletion of nucleotides when variable (VH), diversity 

(D), and joining (JH) genes rearrange [194,195]. 

Mutations in this region are reduced in older adults 

compared to young adults [196] and the preference for 

certain VH family genes in older individuals has been 

reported [197]. In healthy, young individuals, the mRNA 

CDR3 size diversity is represented by a bell-shaped 

profile of peaks. However, frail older individuals exhibit 

a distorted profile in their CDR3 spectratype from the 

normal distribution, indicating a collapse in B cell 

diversity [189]. Interestingly, the collapse in B cell 

diversity is associated with poor health status (frail vs. 

healthy) in this study cohort. Reduced B cell diversity 

also means oligoclonal expansions in the B cell 

repertoire [189]. Most of these oligoclonal B cells are 

derived from the CD5+ subset (B1) of B cells, which 

accounts for increased autoreactive antibodies in the 

aged [190,198]. 

 

B Cell Activation and Effector Function 

Immunosenescence is also evident at the individual cell 

level in biochemical and signaling pathways. In older 

adults, the activity of protein tyrosine kinase (PTK) and 

the expression of protein kinase C (PKC) in response to 

B cell receptor engagement is reduced, thus perturbing 

downstream signaling events, such as antigen-induced 

proliferation [199]. Detailed molecular mechanisms 

behind the reduced antibody response associated with 

immunosenescence is mostly derived from murine 

studies [176].  In aged mice, the number and duration of 

germinal center formation is reduced [200]. Within the 

germinal center, molecular events including class switch 

recombination (CSR) and somatic hypermutation (SHM) 

in the IgH and IgV genes are critical in generating high 
affinity antibodies against antigen. In aged mice, reduced 

germinal center function accompanies reduced activity 

of activation-induced cytidine deaminase (AID), an 

enzyme necessary for CSR and SHM events, and 

reduced expression of E47 protein, a transcription factor 

regulating the gene encoding AID, and reduced stability 

of E47 mRNA [201-204]. However, corresponding, 

direct evidence concerning human germinal centers has 

been limited for obvious reasons. Recently, studies 

employing human peripheral blood B cells (from 

subjects 18-86 years of age) showed that expression of 

E47, AID and Ig1 circle transcripts progressively 

decrease with age [205]. This, together with the 

reduction in the magnitude and duration of antibody 

responses to specific antigen, such as tetanus toxin, 

encephalitis viruses, Salmonella, or pneumonococcus 

indirectly indicates the diminished germinal center 

reaction of aged human B cells in lymphoid organs 

[206]. 

 

B Cell Differentiation 

Progressive defects in mounting high-affinity antibody 

responses in older people is in part due to a decrease in 

the number and percentage of circulating plasma cells in 

the peripheral blood [207]. This decrease could be due to 

reduced survival niches that support plasma cells in the 

bone marrow, due to progressive replacement of 

hematopoietic bone marrow with fat cells, or reduced 

differentiation processes from mature B cells to plasma 

cells [208]. These changes could lead to a reduction in 

the number of antigen-specific plasma cells in peripheral 

blood as well as in bone marrow. The reduction in 

antigen-specific plasma cells, together with the 

oligoclonal expansion of plasma cells with cross-

reactivity and low affinity to specific antigen, may 

account for reduction in the antibody responses to 

influenza vaccination in older adults [24]. 

 

Mechanisms for Improving Influenza Vaccine 

Efficacy in Older Adults 

 

Older adults are at high risk for severe complications 

resulting from influenza infection, and are increasing 

rapidly as a proportion of the world population [209]. 

Adults over the age of 65 currently compose 8% of the 

world’s population, but projections by the U.S. Census 

Bureau predict that proportion will more than double by 

2050 [209]. In some regions of the world, the older 

adults are expected to grow to nearly 30% of the 

population. Growth of this high-risk population, as 

projected by the U.S. Census Bureau, is depicted in 

Figure 2. In the near future, there will be an increasing 

need for protection of this age group from influenza. 



 A.J. Reber et al                                                                                                               Aging and influenza vaccine efficacy 

Aging and Disease • Volume 3, Number 1, February 2012                                                                                 77 
 

 

 

 

 

Figure 2. Projected increase in the aged 

population. Adults over the age of 65 are projected 

to increase worldwide over the next 40 years. The 

summary above, generated from population 

projections by the U.S. Census Bureau [209], predict 

that the older population within every region of the 

world will drastically increase in (A) number, and (B) 

will make up a larger proportion of the overall 

population. This could have a significant impact on 

influenza spread and control as the proportion of high 

risk individuals dramatically increases. 

 

 

 

 

Despite controversies that exist about the 

effectiveness of influenza vaccines in older adults, it is 

clear that improved vaccines need to be developed that 

enhance the immunogenicity of influenza vaccines for 

this age group [210,211]. These improved vaccines need 

to overcome the age-related decline in immune function 

and stimulate both humoral and cellular immunity. 

Several strategies in various stages of development have 

been proposed and tested, including the use of adjuvants, 

cytokines, immunostimulatory complexes, increased 

antigen doses, intradermal vaccine delivery, live-

attenuated vaccines, and virosomal vaccines [210,212-

216]. However, very few of these proposed strategies 

have demonstrated the level of safety and efficacy 

required for licensure (Fig. 3). Two adjuvanted influenza 

vaccines containing MF59 and AS03 marketed by 

Novartis Vaccines and GlaxoSmithKline (GSK), 

respectively, are licensed for use primarily in Europe for 

older adults [217,218]. Canada recently granted licensure 

for the Arepanrix
™

 pandemic H1N1 vaccine and Fluad
®

 

seasonal influenza vaccine containing AS03 and MF59, 

respectively [219,220]. These adjuvants are based on an 

oil-in-water formulation utilizing the biodegradable oil, 

squalene [217,218]. 

MF59, licensed in 1997, is the first adjuvant 

approved for the use in humans since alum [221]. 

Although the MF59-adjuvanted TIV vaccine has been 

marketed in Europe for older adults for over 13 years 

and has been shown to be safe and immunogenic [221-

223], it is not yet approved for use in the US [224]. 

MF59 has been shown to significantly enhance the 

immunogenicity of influenza vaccines in older adults, 

resulting in higher antibody titers than conventional 

unadjuvanted vaccines [225-227].  Additionally, the 

antibody responses induced by MF59-adjuvanted 

vaccine demonstrate broader cross-reactivity with 

influenza strains not included in the vaccine, potentially 

offering improved protection in the event of vaccine 

mismatch with currently circulating strains [228,229]. In 

studies performed in mice and humans, MF59 has been 

shown to enhance the number of influenza specific CD4 

T cells and memory B cells [230-232]. In clinical trials 

evaluating MF59 as an adjuvant for a H5N1 pre-

pandemic vaccine, MF59 induced significant broadly 

reactive, H5-specific, CD4 T cells with a Th1 prone 

effector/memory phenotype after 1 injection [230].  A 

second vaccine dose stimulated H5N1-specific, IgG+ 

memory B cells, and microneutralization titers of ≥ 80. It 

should be noted that MF59’s enhancement of cellular 

immunity has only been studied in subjects aged 18 to 

64, and has yet to be evaluated in older subjects [233]. 

Fluad
®
, the MF59 adjuvanted seasonal influenza 

vaccine, as well as the H5N1 pre-pandemic mentioned 

above are subunit vaccines containing influenza 

hemagglutinin (HA) and neuraminidase (NA), but 

lacking influenza nucleoproteins, matrix proteins, and 

polymerases. As it has been shown that the majority of 

influenza T cell epitopes are derived from the 

nucleoproteins, matrix proteins, and polymerases, with 

minimal epitopes derived from HA and NA [234,235], 

the capacity of these vaccines to expand a broader 

repertoire of cross-reactive T cells may be narrower than 

that of a comparable split-virion vaccine.  This may be 

especially true from the perspective of older adults, 
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whose T cell repertoire has been shown to be narrower 

than that of younger adults due to immunosenescence 

[117-119]. An evaluation of this vaccine’s ability to 

expand cross-reactive T cells in older adults would give 

a more complete understanding of the breadth of this 

vaccine’s effectiveness from the perspective of cellular 

as well as humoral immunity in the older population. 

From studies primarily performed in mice, MF59 has 

been shown to enhance vaccine responses by increasing 

antigen uptake at the site of injection, stimulating the 

release of chemokines to attract additional immune cells, 

and stimulating localized inflammation at the injection 

site, enhancing responses [236-239].  MF59 has also 

been shown to induce the differentiation of monocytes 

into dendritic cells [237]. 

More recently, GSK Biologicals has developed its 

proprietary adjuvant system, AS03, to enhance responses 

to pre-pandemic vaccines. AS03 was initially used with 

an H5N1 split-virion pre-pandemic vaccine called 

Prepandrix
TM

 [218].  In test subjects aged 18 to 60, 

subjects received 2 doses of a split virion vaccine, 21 

days apart [240].  Subjects received 1 of 4 concentrations 

of antigen.  All adjuvanted vaccines in this trial were 

significantly more immunogenic than their unadjuvanted 

counterparts as determined by HI and 

microneutralization titers, including the lowest antigen 

concentration of 3.8g (25% the amount commonly used 

in conventional seasonal vaccines).  Furthermore, the 

AS03 adjuvant was shown to stimulate cross-

neutralizing antibody to related drift strains, as well as 

cross-reactive B and T cells [240-242]. Studies in 

subjects over the age of 61 showed significantly higher 

geometric mean HI titers than unadjuvanted vaccine, and 

antigen specific CD4 T cells [243]. Prepandrix™ is 

currently licensed to market in all members of the 

European Union [218].  With the emergence of H1N1 

pandemic influenza in 2009, the monovalent H1N1 

pandemic vaccine, Pandemrix™ was adjuvanted with 

AS03. In clinical trials evaluating the immunogenicity of 

the H1N1 pandemic vaccine, 85.7% of subjects older 

than 60 years of age demonstrated seroprotection 

(defined as an HI titer ≥ 1:40) after the first dose, and 

87.8%, after a booster vaccination at 21 days [244].  An 

AS03-adjuvanted seasonal influenza vaccine for older 

adults is currently in development  [224]. 

 

 
Figure 3. Licensed influenza vaccines eliciting improved immune responses in older adults. 
Conventional vaccines have been shown to elicit poor immune responses in older adults. Several 

novel mechanisms have resulted in influenza vaccines which elicit improved immune responses 

in this population, yet are considered safe enough by regulatory agencies to warrant licensure. 
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In studies performed in mice and humans, the AS03 

adjuvant system has been shown to enhance immune 

responses by inducing localized inflammation at the 

injection site, increasing production of cytokines and 

chemokines, and recruiting granulocytes, macrophages 

and dendritic cells to the injection site and draining 

lymph nodes [245]. Antigen presenting cells displayed 

increased activation and increased antigen presentation 

[245]. 

Several studies have shown that increasing the 

vaccine dose from the standard 15 g of HA per virus 

strain can enhance the level of protective antibodies 

[246-249]. In studies in older adults, vaccines were 

generated matching that year’s seasonal vaccine strains 

(2001-2002, and 2004-2005 seasons), but containing 60 

g of HA for each viral strain rather than the 

conventional 15 g.  These high-dose vaccines generated 

significantly higher HI and neutralizing antibody titers 

than the conventional-dose vaccines [244,247].  While 

each of the vaccine doses was well tolerated, a dose 

related increase in injection site reactions was observed 

in the studies. A recent study by Chen et al., 

demonstrated similar findings using a 60 g dose 

influenza vaccine [249].  While the high-dose vaccine 

did not increase responses to the level observed in 

younger volunteers, the number of complete non-

responders in the older adult group was significantly 

reduced. 

In December of 2009, the US Food and Drug 

Administration (FDA) granted a license to Sanofi 

Pasteur for Fluzone
®
 High-Dose, a trivalent, inactivated 

influenza vaccine containing 60 g of HA for each of the 

viral strains [250,251]. Approval for this vaccine was 

granted under an accelerated process based on favorable 

safety and efficacy data [250]. Under this accelerated 

process, the manufacturer is required to provide 

additional data evaluating vaccine effectiveness in 

preventing seasonal influenza [250]. The Advisory 

Committee on Immunization Practices (ACIP) reviewed 

data generated during the first year after licensure, 

acknowledging the vaccine’s favorable immunogenicity 

and safety data.  However, the committee has expressed 

no preference for Fluzone
®
 High-Dose, nor for any other 

influenza vaccine, for preferred use in older adults 

[250,252]. 

The use of virus-like particles, called virosomes, as 

an alternative delivery vehicle has been proposed for 

some time. Virosomes are liposomes with the viral 

surface antigens on their surface, but with relevant T cell 

antigens inside rather than the viral genetic material. 

This creates a delivery system which mimics viral 
infection, without the pathology associated with live 

virus. Virosomes are able to present intact surface 

antigen to B cells, and are readily taken up by APCs for 

presentation to T cells. Upon uptake by APCs, the 

virosomes fuse with the endosomal membrane 

[253,254]. This fusion releases the internal antigens into 

the cytosol where they can be loaded onto MHC class I 

for presentation to T cytotoxic cells, while the surface 

antigens are processed within the endosome for 

presentation on MHC class II to T helper cells [253,255]. 

The first virosomal influenza vaccine, Inflexal
®

 V 

marketed by Crucell N.V., was introduced in 

Switzerland in 1997, in Italy in 1998, and throughout the 

rest of Europe in 2001 [256]. Safety studies have 

demonstrated that Inflexal
®
 V is safe and well tolerated 

by all age groups, including children, older adults, and 

immunocompromised patients [256-260]. However, 

studies in older adults examining the immunogenicity of 

virosomal vaccines have varied widely in their 

conclusions, ranging from greater responses to inferior 

responses compared with conventional vaccines 

[257,261-265]. 

The route of delivery has long been known to affect 

the immune response elicited by a vaccine. The most 

common route of influenza vaccine delivery is by 

intramuscular injection. This method does not require 

significant skill for delivery thereby making mass 

vaccination during influenza season possible. However, 

the muscle environment is not considered to be an 

efficient site for vaccination due to the low numbers of 

APCs [266]. In contrast, intradermal vaccination is 

considered a significantly more efficient route of 

delivery due to the high number of resident macrophages 

and dendritic cells [266-269]. Intradermal vaccine 

delivery; however, requires more skill, making 

intradermal vaccines less popular in the past. Recent 

advances in intradermal vaccine delivery systems, 

including patches, microneedle injection systems, and 

needle free systems have made this route of vaccine 

delivery more attractive and feasible for influenza 

vaccines [270-273]. Clinical trials in the elderly 

evaluating intradermal delivery of influenza vaccines 

using these new delivery systems compared to 

conventional intramuscular vaccines has shown 

equivalent or enhanced immunogenicity by the 

intradermal route [270,274-276]. The intradermal 

influenza vaccine, Intanza
®
 produced by Sanofi Pasteur, 

was granted licensure by the European Medicines 

Agency for marketing throughout the European Union in 

February 2009, and was approved for marketing in 

Australia by the Therapeutic Goods Agency in March of 

2009 [277]. Intanza
®
 became available in Canada in 

2010, and was recently licensed in May 2011 by the 
FDA for marketing in the U.S. under the name Fluzone 

Intradermal
®

 [278,279]. However, this vaccine is only 
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approved for ages 18 to 59 years in Canada and 

Australia, and ages 18 to 64 years in the U.S.  The 

European Union has approved a 15g Intanza
®
 vaccine 

for use in adults over age 60 years (compared to the 9g 

dose approved for ages 18 to 59 years). In a recent phase 

III, multi-center, randomized, controlled study 

performed in adults aged 65 years or more, Intanza
®
 was 

shown to have immunogenicity and safety comparable to 

the MF59 adjuvanted Fluad
®

 vaccine [280]. 

Many strategies to enhance the immunogenicity 

of influenza vaccines for older adults are still in the early 

stages of development and these include the use of toll-

like receptor (TLR) ligands as adjuvants to enhance 

immune responses to vaccines. These ligands act by 

binding TLRs on the surface of APCs resulting in APC 

activation, release of pro-inflammatory cytokines and 

chemokines, thus enhancing adaptive immune responses. 

However, as discussed earlier, older adults demonstrate a 

reduced capacity to respond to many TLR ligands which 

may reduce the effectiveness of this mechanism. A 

recent study performed in an aging mouse model has 

shown that Poly I:C, a TLR-3 ligand, retains its ability to 

stimulate APCs resulting in release of pro-inflammatory 

cytokines, leading to enhanced T helper function [281]. 

In a brief report, McElhaney suggested that a TLR4 

ligand may also be effective in improving the IFN-:IL-

10 ratio and Granzyme B activity in aged mice [282]; 

functions that she has previously demonstrated correlate 

with protection in the elderly [30,31]. 

 

Conclusions 

 

Influenza causes considerable morbidity and mortality 

worldwide, but disproportionately affects older adults.  

Conventional TIV vaccines provide adequate protection 

in young, healthy adults against seasonal epidemics.  

However, older adults do not develop effective 

protective immunity in response to these vaccines due to 

immunosenescence which impacts the cellular 

components of both innate and adaptive immune 

systems. While the dysregulation of the immune system 

with aging is becoming better understood, strategies for 

overcoming these deficiencies are being explored, which 

include high-dose vaccines, adjuvanted-vaccines, and 

alternate routes of immunization.  
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